目的 基于二硫键交联合成精氨酸-组氨酸(HRss)阳离子聚合物,构建新型纳米复合物HRss/miR-15-a,用于前列腺癌研究。方法 利用1H-NMR鉴定HRss2/miR-15-a载体的结构,通过电位粒度仪测定纳米复合物的电位和粒径,利用琼脂糖凝胶电泳考察载体对miR-15-a的包裹能力。以体外培养的前列腺癌干细胞RC-92a/hTERT为研究对象,CCK8法检测3种纳米复合物对细胞增殖的抑制作用,以pEGFP为报告基因考察基因转染效率,利用Transwell小室考察HRss/miR-15-a对细胞运动能力的影响。结果 细胞毒性试验结果显示,载体材料对正常及肿瘤细胞毒性较低,可以包裹miR-15-a形成稳定的纳米复合物,HRss2/miR-15-a相较于HRss1/miR-15-a和HRss3/miR-15-a,转染效率更高,对前列腺癌干细胞的运动能力影响也更大。结论 HRss可以运载基因药物,体外评价效果最佳的HRss2,有潜力成为抗前列腺癌基因治疗中的新型载体。
Abstract
OBJECTIVE To synthesize cationic polymers of arginine-histidine (HRss) based on disulfide crosslink and construct novel nano-complex HRss/miR-15-a, then study its anti-prostate cancer effect in vitro. METHODS 1H-NMR was used to characterize HRss2/miR-15-a. Zeta sizer was adopted to estimate the Zeta potential and particle size of the nano-complex. Gel electrophoresis was employed to determine the condensation capacity of HRssto miR-15-a. The cytotoxicity and transfection efficiency of HRss was evaluated using prostate cancer stem-like cells (RC-92a/hTERT). Transwell chambers were used to evaluate the influence of HRss/miR-15-a against the motility of RC-92a/hTERT. RESULTS The RESULTS of cytotoxicity tests indicated that the carrier HRss2 had low toxicity in both normal cells and cancer cells, and the miR-15-a could be loaded in HRss2 to form stable nano-complex. The transfection efficiency and inhibited motility of HRss2/miR-15-a against RC-92a/hTERT were statistically higher than those of HRss1/miR-15-a and HRss3/miR-15-a. CONCLUSION HRss may be useful for gene delivery, and HRss2, as the optimum polycationic carrier as shown by in vitro evaluation, has the potential to become a novel gene vector in the therapy of prostate cancer.
关键词
聚阳离子载体 /
前列腺癌 /
miR-15-a
{{custom_keyword}} /
Key words
polycationic carrier /
prostate cancer /
miR-15-a
{{custom_keyword}} /
中图分类号:
R944
R969
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] SIEGEL R, MA J, ZOU Z, et al. Cancer statistics, 2014 [J]. CA Cancer J Clin, 2014, 64 (1):9-29.
[2] ISLAM F, QIAO B, SMITH R A, et al. Cancer stem cell:fundamental experimental pathological concepts and updates [J]. Exp Mol Pathol, 2015, 98 (2):184-191.
[3] KIM J H, LEE H J, SONG Y S. Stem cell based gene therapy in prostate cancer [J]. Biomed Res Int, 2014,(4):549136.
[4] JONES C H, HILL A, CHEN M, et al. Contemporary approaches for nonviral gene therapy [J]. Disvov Med, 2015, 19 (107):447-454.
[5] ISLAM M A, PARK T E, SINGH B, et al. Major degradable polycations as carriers for DNA and siRNA [J]. J Controlled Release, 2014, 193:74-89.
[6] VOYTAS D. Agarose gel electrophoresis [J]. Curr Protoc Immunol, 2001,10(4):10-14.
[7] JUNQUERA E, AICART E. Recent progress in gene therapy to deliver nucleic acids with multivalent cationic vectors [J]. Adv Colloid Interface Sci, 2016, 233:161-175.
[8] HUNTER A C, MOGHIMI S M. C ationic carriers of genetic material and cell death:a mitochondrial tale [J]. Biochim Biophys Acta, 2010, 1797(6-7):1203-1209.
[9] XUE H Y, LIU S, WONG H L. Nanotoxicity:a key obstacle to clinical translation of siRNA-based nanomedicine [J]. Nanomedicine (London), 2014, 9(2):295-312.
[10] YIN H, KANASTY R L, ELTOUKHY A A, et al. Non-viral vectors for gene-based therapy [J]. Nat Rev Genet, 2014, 15 (8):541-555.
[11] AFONIN K A, KASPRZAK W K, BINDEWALD E, et al. In silico design and enzymatic synthesis of functional RNA nanoparticles [J]. Acc Chem Res, 2014, 47(6):1731-1741.
[12] PITTELLA F, CABRAL H, MAEDA Y, et al. Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles[J]. J Controlled Release, 2014, 178:18-24.
[13] JULIANO R L, CARVER K. Cellular uptake and intracellular trafficking of oligonucleotides [J]. Adv Drug Deliv Rev, 2015, 87(2):35-45.
[14] CHEN Z, ZHANG L, HE Y, et al. Enhanced shRNA delivery and ABCG2 silencing by charge-reversible layered nanocarriers [J]. Small, 2015, 11(8):952-962.
[15] WANG Y, RAJALA A, RAJALA R V. Lipid nanoparticles for ocular gene delivery [J]. J Funct Biomater, 2015, 6(2):379-394.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金资助项目(81201809);浙江省公益性技术应用研究计划资助项目(2015C37125);浙江省自然科学基金资助项目(LQ12H30005);嘉兴市科技计划资助项目(2012AY1075-3, 2015AY23064);“十二五”浙江省高校重点学科(药理学)资助项目
{{custom_fund}}